Isolation and characterization of two distinct myo-inositol transporter genes of Saccharomyces cerevisiae.

نویسندگان

  • J Nikawa
  • Y Tsukagoshi
  • S Yamashita
چکیده

By the complementation of a yeast mutant defective in myo-inositol transport (Nikawa, J., Nagumo, T., and Yamashita, S. (1982) J. Bacteriol. 150, 441-446), we isolated two myo-inositol transporter genes, ITR1 and ITR2, from a yeast gene library. The ITR1 and ITR2 genes contained long open reading frames capable of encoding 584 and 612 amino acids with calculated relative molecular masses of 63,605 and 67,041, respectively. The sequence similarity between the ITR1 and ITR2 products was extremely high, suggesting that the two genes arose from a common ancestor. Both gene products show significant sequence homology with a superfamily of sugar transporters, including human HepG2 hepatoma/erythrocyte glucose transporter and Escherichia coli xylose transporter. Hydropathy analysis indicated that the ITR1 and ITR2 products are both hydrophobic and contain 12 putative membrane-spanning regions. Thus, yeast myo-inositol transporters could be classified into the sugar transporter superfamily. Gene disruption and tetrad analysis showed that yeast cells contain two separate myoinositol transporters. The ITR1 product was the major transporter and the ITR2 product the minor one in cells grown in minimum medium containing glucose. Northern blot analysis showed that ITR1 mRNA was much more abundant than ITR2 mRNA. The previously isolated myo-inositol transport mutant was determined to be defective in ITR1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of an Expanded Inositol Transporter Repertoire in Cryptococcus neoformans Sexual Reproduction and Virulence

Cryptococcus neoformans and Cryptococcus gattii are globally distributed human fungal pathogens and the leading causes of fungal meningitis. Recent studies reveal that myo-inositol is an important factor for fungal sexual reproduction. That C. neoformans can utilize myo-inositol as a sole carbon source and the existence of abundant inositol in the human central nervous system suggest that inosi...

متن کامل

Myo-inositol transport in Saccharomyces cerevisiae.

myo-Inositol uptake in Saccharomyces cerevisiae was dependent on temperature, time, and substrate concentration. The transport obeyed saturation kinetics with an apparent Km for myo-inositol of 0.1 mM, myo-Inositol analogs, such as scyllo-inositol, 2-inosose, mannitol, and 1,2-cyclohexanediol, had no effect on myo-inositol uptake, myo-Inositol uptake required metabolic energy. Removal of D-gluc...

متن کامل

Functional and physiological characterization of Arabidopsis INOSITOL TRANSPORTER1, a novel tonoplast-localized transporter for myo-inositol.

Arabidopsis thaliana INOSITOL TRANSPORTER1 (INT1) is a member of a small gene family with only three more genes (INT2 to INT4). INT2 and INT4 were shown to encode plasma membrane-localized transporters for different inositol epimers, and INT3 was characterized as a pseudogene. Here, we present the functional and physiological characterization of the INT1 protein, analyses of the tissue-specific...

متن کامل

The SNF2/SWI2/GAM1/TYE3/RIC1 gene is involved in the coordinate regulation of phospholipid synthesis in Saccharomyces cerevisiae.

Genes involved in the phospholipid synthesis of Saccharomyces cerevisiae, such as PEM1, PEM2, PSS, and INO1, are coordinately repressed by myo-inositol and choline. In order to investigate this regulation, we transformed wild-type yeast with a PEM1 promoter-lacZ fusion and isolated two mutants, named ric1 and ric2 (regulation by myo-inositol and choline), exhibiting decreased PEM1 expression. T...

متن کامل

Expression of phytase in yeast:

Background. Phytate (myo-inositol hexakisphosphate) is a naturally occurring compound in plants. Due to chelation of several dietary minerals, it acts as a potent anti-nutrient in foods. Degradation of phytate has previously been found to significantly improve absorption of nutritionally important minerals, such as iron and zinc, in the human intestine. By removing regulatory genes for phytase ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 266 17  شماره 

صفحات  -

تاریخ انتشار 1991